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A substantial amount of drilling fluid can invade a permeable bed during the drilling 
of an oil well. The presence of this fluid, often referred to as filtrate, can greatly 
influence the performance of instruments lowered into the wellbore for the purpose of 
locating these permeable beds. The invaded filtrate can also substantially alter the 
physical properties of the porous rock. For these reasons, it is of great interest to 
known where the filtrate goes upon entering the bed. The objective of this study is to 
quantify the influence of the difference in density between the filtrate and the naturally 
occurring formation fluid on the shape of the filtrate front as the filtrate invades the 
formation. This type of phenomenon is often referred to as buoyancy or gravity 
segregation. In this study, Part 1, we determine the behaviour of the filtrate as it 
accumulates (and spreads out) at a horizontal impermeable barrier within the 
formation. This is a combined theoretical and experimental study in which an X-ray 
CT scanner is extensively used to determine the appropriateness and limitations of the 
simplifying assumptions used in the theory. In Part 2, the flow of the invading filtrate 
within the entire bed will be presented. The problem addressed in Part 1 may be viewed 
from the broader, more fundamental, perspective, as a well-defined model fluid 
mechanics problem for flow in porous media. One fundamental issue infrequently 
addressed concerns the consequence on the dynamics of the fluids of heterogeneities, 
always present to some degree, in consolidated porous solids. The X-ray CT scanner 
enables the assessment of the appropriateness of modelling such porous solids as 
spatially homogeneous, a very popular assumption. This study also addresses the 
limitation of the small-slope approximation when a fluid-fluid interface occurs in a 
porous solid, an approximation which has enjoyed great success in free-surface fluid 
mechanics problems when no porous media is present. 

1. Introduction 
As soon as a drill bit starts penetrating a permeable zone, filtrate from the wellbore 

begins entering the formation. This is a direct consequence of safety consideration 
which require the pressure of the drilling fluid in the wellbore to be maintained at a 
much higher value than the pressure of the fluid within the porous rock, thus 
preventing a well from producing when it is in the process of being drilled. Massive 
invasion of drilling fluid is prevented by the immediate buildup of mud cake along the 
wellbore wall. Since the presence of the filtrate within the formation affects the 
performance and interpretation of instruments lowered into the wellbore for detecting 
the presence of hydrocarbons (commonly referred to as logging tools), knowledge of 
the location of the filtrate is highly desirable (Allen et al. 1991). The objective of this 
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Lower portion of bed 

Mudcake 

FIGURE 1.  Illustration of Doll’s results of the invasion of fresh filtrate into a salt-water-bearing 
sand formation bounded above and below by an impermeable matrix. 

study is to quantify the movement of the filtrate arising from density differences 
between the filtrate and the formation fluid. This induced motion is often referred to 
as gravity segregation. 

Henri Doll (1955) was the first to investigate the influence of gravity on the shape of 
the filtrate front (the interface formed between the filtrate and the formation fluid). His 
motivation was to find an explanation for very shallow invasion occurring in highly 
permeable beds. This contradicted the commonly held notion that shallow invasion 
only happened in beds having low permeability. His investigation, both theoretical and 
experimental, consisted of fresh water filtrate entering a bed fully saturated with salt 
water, from a vertical wellbore. He was able to demonstrate that buoyancy can cause 
the fresh filtrate to rise with an almost vertical trajectory at the wellbore wall, resulting 
in a rather shallow depth of invasion over the lower portion of the bed, and to 
accumulate beneath the upper impermeable bed boundary, resulting in deep invasion 
over the upper portion of the bed (see figure 1). Since his analysis was restricted to the 
lower portion of the bed, he was unable to estimate the dimensions (both the thickness 
and lateral extent) of the accumulated layer of filtrate beneath the upper impermeable 
bed boundary under field conditions. Knowledge of the dependence of the dimensions 
of this layer on the properties of the formation may aid in the determination of these 
properties from the analysis of log data. 

Doll’s study established the importance of two characteristic speeds : the radial speed 
at which the filtrate is forced to flow into the formation, and the vertical speed induced 
by the difference in density between the filtrate and the formation fluid. The ratio of 
these two speeds quantifies the importance of buoyancy, i.e. when the vertically 
induced speed ‘greatly exceeds’ the radially imposed speed then buoyancy effects are 
large. His combined experimental and theoretical results indicate that when buoyancy 
is large, the filtrate can be divided into two regions : a vertical layer contiguous with the 
wellbore wall occupying the lower portion of the bed in his study, and a horizontal layer 
consisting of filtrate spreading out across an impermeable horizontal barrier located in 
the upper region of his experiment. Thus our investigation concerns the dynamics of 
the horizontal layer in the large-buoyancy case. 

This is Part 1 of a study of the invasion process. Here, the dynamic behaviour of the 
filtrate in the horizontal layer is quantified, i.e. the thickness and the depth of 



Buoyancy-induced fEow in porous media. Part I 285 

penetration into the formation of accumulated filtrate at horizontal impermeable 
barriers are determined. The specific model introduced by Doll is adopted, that of a 
single horizontal bed through which is cut a vertical wellbore. Since our interest is over 
the timescale between the drilling of the permeable zone and the logging operation, we, 
like Doll, assume the wellbore instantaneously appears in the bed at time t = 0, having 
a mud cake in equilibrium with the dynamic conditions in the well. This is consistent 
with the current belief that as much as 95 % of the volume of filtrate which has invaded 
the formation by the time the well is logged occurs under dynamic conditions in the 
presence of a mud cake (Gray & Darley 1980). That is to say, the volume of filtrate 
which invades the bed beneath the drill bit, and before the mud cake develops (spurt 
loss), or when static conditions prevail in the well (addition of new pipe sections to the 
drill string or drill bit replacement) is relatively small (references cited in Gray & 
Darley). Part 2 of this study (Dussan V. & Auzerais 1993) addresses the dynamics of 
the filtrate over the entire bed by combining these results with those of Doll. 

A summary of the contents of this paper, Part 1, is as follows. Since this investigation 
depends upon Doll’s, we begin in $2 with a brief presentation of his results. They are 
used to determine the rate at which filtrate is delivered to the horizontal layer. This 
represents our starting point. In $3, the equations and boundary conditions governing 
the dynamics of the filtrate and the formation fluid within the upper portion of the bed 
are simplified, consistent with the assumption of large buoyancy. Since our concern is 
with the dynamics of the fluid in the horizontal layer, the filtrate entering the layer is 
modelled as coming from a point source located on the impermeable boundary. This 
represents a self-contained well-defined model fluid mechanics problem of flow in 
porous media in which a moving ‘ free-surface’ is present. We next identify the relevant 
scales for the vertical and radial spatial coordinates and velocity components, which 
are not obvious. A boundary-value problem is derived as the lowest-order problem 
resulting from a formal asymptotic expansion in terms of a parameter (a measure of 
the buoyancy strength). The same boundary-value problem was identified and solved 
by Barenblatt (see Barenblatt, Entov & Ryzhik 1990) who was interested in a different 
though related problem (refer to their chapter 3). (Barenblatt’s work was initially 
published in Russian in the early 1950s.) The section ends with a presentation 
highlighting the method of solution, including the results relevant to this study. 
Experiments were performed to determine the appropriateness of the simplifying 
assumptions of our model, as well as the limitations introduced by only using the 
lowest-order term in an asymptotic expansion of the location of the filtrate front. 
Unlike Doll, who was restricted in his experiments to unconsolidated glass beads so 
that the motion of the dyed filtrate could be followed visually, we used an opaque 
commercial filter consisting of resin-cemented glass beads whose structure has 
similarities to porous rock (our future intent is to use porous rock). This was possible 
because the location of the filtrate, as it accumulated at the impermeable horizontal 
boundary, was followed using images taken with an X-ray CT scanner. The 
instrumentation, characterization of materials (porous solid, filtrate and formation 
fluids), experimental procedure, technique for extracting the location of the filtrate 
front from the images (pattern recognition) and results are all presented in $4. In $ 5 ,  
the results of the theory and experiment are discussed. 

2. Vertical layer 
We begin by discussing the dynamics of the filtrate contiguous to the wellbore, 

within what we have referred to as the vertical layer. This encompasses a presentation 
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FIGURE 2. The development of the filtrate front as the filtrate invades the formation. In (a), four 
filtrate material points a-d located at the wellbore wall at time d = 0 are identified. Their subsequent 
positions within the lower portion of the bed are identified at three successive times 0 < t ,  < t ,  < t ,  
in (b), (c) and (d), respectively. By time t,, the filtrate points b, c and d have entered the upper portion 
of the bed, with point a about to enter. In this illustration, T = t , .  

of the velocity field of the filtrate as it invades the formation and the time-dependent 
location of the filtrate front. Our objective is the identification of the rate at which 
filtrate enters the horizontal layer, a quantity needed in our investigation. 

The following results are due to Doll (1955). He showed through simple reasoning, 
that when buoyancy dominates, the velocity of the filtrate, ufiz, within the formation 
is given by 

where uf denotes the (Darcy) speed of the filtrate as it enters the formation at the 
wellbore wall (not to be confused with ufil which shall denote ~ ~ ~ ~ - 2 ,  the radial 
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component of the filtrate velocity evaluated at any point within the formation occupied 
by filtrate), Rwb denotes the wellbore radius, and E and .f denote, respectively, local unit 
vectors in the radial and axial directions of a cylindrical coordinate system (Y, 8, z )  
whose z-axis coincides with the centre of the wellbore and points upward (the plane 
z = 0 indicating the location of the lower impermeable boundary of the bed). The 
constant, W, appearing in (1) denotes @,ii-p,or)gkv/p,~L, where p and p denote, 
respectively, the density and the viscosity of the fluid (the subscriptsfil andfor referring 
to the filtrate and the formation fluid, respectively), g denotes the gravitational 
constant (980 cm/s2) and k, denotes the vertical component of the permeability of the 
formation. (Sedimentary rocks, where oil is found, are known for being anisotropic. 
The vertical component of the permeability is smaller than the components in either 
horizontal direction, which are usually approximated to be equal.) The form of the 
filtrate velocity (1) is quite simple. Its radial component is identical to that of an 
incompressible fluid, having the same density as the formation fluid, entering the 
formation at constant speed uf along the entire wellbore wall. The vertical component 
of (1) is an absolute constant, W, not varying with position within the formation nor 
over time. Thus the parameter Gfgt - p,,,.) gk, /pf i ,  u, may be regarded as quantifying 
the influence of buoyancy. Equation (1) is based upon the assumption that almost all 
the pressure drop between the drilling fluid within the wellbore and the formation (not 
uncommon to be several hundred p.s.i.) occurs across the mud cake, a thin layer 
situated at the wellbore wall. A direct consequence is that the value of uf is determined 
by the properties of the mud cake, not by the permeability of the formation. This is 
appropriate, under field conditions, for formations with horizontal component of 
permeability greater than approximately 10 mD. 

Doll also determined the progression of the filtrate front. These results can be 
reconstructed by following the motion of a few material points as they enter the 
formation at time t = 0, refer to figure 2. The filtrate velocity (1) can be used to local 
these points at, say, four successive time 0 > t, > t, > t,. At each time, all of the points 
have advanced into the formation by the same distance, maintaining identical radial 
positions, and have risen vertically by the same amount, retaining their same vertical 
spacing until they have entered the horizontal layer. The curved section of the filtrate 
front, which begins to develop along its lower end, denotes the location of filtrate 
material points having entered the formation at position ( I ,  z )  = (&, 0) at times later 
than t = 0 (the &coordinate has not been specified due to azimuthal symmetry). The 
vertical straight section denotes the location of filtrate points at the wellbore wall at 
t = 0, possessing the same sort of trajectories as the material points discussed above. At 
time q5HfOr/W, denoted by T, the shape of the filtrate front has reached its steady-state 
configuration. This corresponds to the approximate time it takes the filtrate material 
point located at (Rwb,O) at time t = 0 to travel to the upper portion of the bed. The 
location of the filtrate front is summarized by 

for T <  t. 

These results enable the volume of filtrate entering the horizontal layer, denoted by 
V(t), to be calculated. Equation (1) implies 
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Substituting (2) into (3) and integrating, gives 
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These expressions are used in the analysis of the dynamics of the filtrate in the 
horizontal layer. 

3. Horizontal layer analysis 
3.1. Modelling assumptions 

The analysis of the filtrate within the horizontal layer remains rather complex, even 
after decoupling it from the analysis of the vertical layer. For this reason, we have 
restricted our study to the dynamics of the filtrate located furthest from the wellbore, 
near the leading edge of the horizontal layer as it invades the formation, which will be 
referred to as the 'outer' region of the horizontal layer. This restriction is responsible 
for a major simplification in the analysis, modelling the source of filtrate entering the 
horizontal layer as coming from a point located at (r, z) = (0,O) having strength given 
by (3) or (4). It should be noted that restricting the analysis to the outer region is 
consistent with the fact that we are investigating the large-buoyancy case, as discussed 
in $1. 

The point source has been located on the lower rather than on an upper horizontal 
impermeable solid boundary to facilitate comparison with our experimental results. 
Thus, the porous solid lies in the half-space z > 0, z-axis pointing in the direction 
opposite to gravity. However, there is no change in the physics other than inducing 
motion in the - 2, as opposed to the + 2, direction, equivalent to rotating figures 1 and 
2 by 180" in the plane of the paper. 

The dynamics of the filtrate is modelled by a rather simplified form of the multiphase 
Darcy law. Specifically, it is assumed that the filtrate completely displaces the 
formation fluid and capillary pressure effects can be ignored. The former assumption 
is quite good when the mobility (permeability of a particular phase divided by its 
viscosity) of the filtrate far exceeds that of the formation fluid, as is the case of a liquid 
displacing a gas. It is also a good approximation when the two phases are miscible, 
which is the case when water (oil) base drilling fluid invades a water (oil) zone, and is 
the situation in our experiments where the filtrate is a salt solution and the formation 
fluid consists of fresh water. The latter assumption, neglecting the capillary pressure, 
is justified when the lengthscale associated with the width of the transition region 
between the filtrate and the formation fluid, may be regarded as small relative to the 
other relevant lengthscales, or when the two phases are miscible. 

Finally, we do not find a solution when the strength of the point source is given by 
(3) or (4), rather we focus on two special cases: Y(t) - P ,  for a = 1,2. These should 
accurately describe the solution during early time (a = 2), applicable when 0 d t < T, 
and late time (a = 1) asymptotically as t - t  00, when T c t. The completeness of these 
two special cases in describing the desired point source is addressed in Part 2 where the 
dynamics of the filtrate in the vertical and horizontal layers are combined to describe 
invasion into the entire permeable zone. 

3.2. Scaling and expanding in a small parameter 
It is typical to begin an investigation by identifying the appropriate scales for all of the 
dependent and independent variables. However, in this problem many of the scales are 
not obvious, such as those associated with r , z ,  and the two components of velocity. 
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Instead, we know the material properties pi, pi, k,, k, and q5, denoting respectively the 
densities and viscosities of both fluids (i represents either for or $1, denoting the 
formation fluid or filtrate, respectively), the horizontal and vertical components of the 
permeability of the porous solid (sedimentary rock, the porous solid of concern to us, 
is usually to some degree anisotropic, with k,/k, > 1) and the porosity of the solid. It 
is also assumed that a timescale, T, and the accumulative volume of filtrate which has 
entered the porous solid, at any time t ,  Y(t), are known. In order to determine the 
appropriate scales, it is helpful to identify the boundary-value problem governing the 
dynamics of the fluids. 

The governing equations and boundary conditions are as follows: Darcy's law 
(conservation of linear momentum) for both fluids, 

a combination of conservation of mass and the kinematic boundary condition at the 
filtrate-formation fluid interface (assuming the interface displaces all of the formation 
fluid as it moves through the formation), 

uftl - n = ufor - n at z = a(r, t ) ;  (9) 

the dynamic boundary condition at the filtrate-formation fluid interface, 

the boundary condition at the impermeable surface of the solid, 

boundary conditions far from the source, 

and a known volume of filtrate within the porous solid at time t ,  

V(t) = 2n4 1:' 20, t )  r dr, 

0 = %(W), 0,  
where R(t) satisfies 

attention being restricted to point sources resulting in filtrate volumes of the form 
Y(t) = Qtu, for CL > 0. Here ci denotes the compressibility of each fluid; u, equivalent 
to UP+ wf, denotes the velocity of the fluids, P and i denoting unit vectors in the r- and 
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z-directions, respectively ; ( r ,  O,Z(r, t ) )  denotes the location of the filtrateformation 
fluid interface, with n denoting its local unit normal vector, and R(t) denoting the radial 
position at which the fluid interface intersects the impermeable boundary, that is to say, 
the 'leading edge' of the filtrate as it spreads along z = 0. 

This investigation has its limitations. Identifying the dominant terms in the above 
boundary-value problem consistent with these limitations determines the appropriate 
scales for the dependent and independent variables. Our principle restriction concerns 
the shape of the filtrateformation fluid interface. It is assumed that the slope of the 
fluid interface is small relative to that of the impermeable solid boundary. Using a line 
of reasoning commonly employed in free-surface problems containing thin layers of 
liquids (the Navier-Stokes equation replacing Darcy's law), it is readily concluded that 
the small-slope assumption implies ufor - 0, apftg/ar - A p g H / L  and ufil - U(H/L)  i, 
where U denotes Apgkh/,ufil. Here, L and H represent, respectively, the yet to be 
determined scales for r and z in the filtrate, and Ap denotes c0fal -pfor). The scaling is 
complete by making the following two assumptions: the two terms on the left-hand 
side of (8) be of comparable size, implying 

and each of the two terms in (13) be of comparable size, implying 

QT" = $HL2. (16) 

L = (UQTu"/$2)', (1 7) 
H = (QT"-'/U);. (1 8) 

Equations (1 5 )  and (1 6) combine to give expressions for L and H in terms of known 
quantities, 

Thus, the scales chosen for the variables r, z, t ,  u, w and p are L, H ,  T, U H / L ,  U(H/L)2 
and ApgH for the filtrate, and L, L(k,/kh)', T, U(H/L)2, U(H/L)2  and ApgH for the 
formation fluid. 

The boundary-value problem is expressed in dimensionless form based upon the 
above scales. A 'bar', or a 'hat', over a variable indicates respectively the use of the 
filtrate scale or the formation fluid scale. Equations (5)-(14) become: for the filtrate, 

w = O  at z=O, 
a t = 2~ 1; 2 ( ~ ,  l) i=dF, 

0 = 2(R(q, q ;  
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and for the formation fluid, 

(26) 0 = -----fi aP: Hpfor 
a? L pfil ' 

Here, +ya denotes the ratio of two timescales, pr $ci L2/kh T ;  e denotes (kh/kv)i (H/L) ; 
and pm denotes p,/ApgH. The other two dimensionless groups appearing in (19)-(31) 
are pf6JpfOr and pfrl /Ap.  Note that kh/kv does not appear as an independent 
dimensionless group because of its inclusion in the scale for z in the formation fluid. 

The small-slope assumption is formally imposed by seeking an asymptotic solution 
in the limit as e -+ 0. The expansions of the dependent variables are as follows : 

9 - bo(~ C ~ i ,  pfil/Ap, pfil/pfor) + & 9 1 +  * * * 9 

R - ROK +yo PftZ/AP, pftl/Pfo,> + 4 + * * * 9 

P N (l/e)P-I(i=, F> t; +yi, PfiJAP, pftl/pfor> +Po + €PI+ * .  * 9 

B - (1/e)B-l(T", 2, t"; ~ $ 9  ~ f t l / A ~ ,  pfil/pfor) + a 0  + €#I+ 

(32) 
(33) 
(34) 
(35) 9 

requiring the latter two expansions to be consistent with both P and Ei being O(1) as 
e+ 0. Here the higher-order terms in each of the above expansions depend upon the 
same variables as that indicated for the lowest-order term. In each expansion, all of the 
identified variables are held constant as e-+ 0, except for yt, which are assumed to be 

3.3. Solutions 
O(4. 

Determining the behaviour of the lower-order terms in the above asymptotic 
expansions is rather straightforward. Darcy's law for the filtrate, (19) and (20), and the 
assumption that P is of O(1) as e + 0, implies 

p-1 = L1(f), (36) 

while Darcy's law for the formation fluid, (26) and (27), and the assumption that li is 
of O( 1) as B+ 0, implies 

h-l = - P = i + B 1 ( i ) ,  (38) 

B0 = S,(i). (39) 
AP 

The functions S-,(Q and i0(Q are determined from the boundary condition for the 
formation pressure far from the point source, (31), resulting in 
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and the functions A_,(?) and Xo(c?) are determined from the dynamic boundary 
condition at the fluid interface, (30), and (40), resulting in 

Note that (40) and (41) are consistent with (28) and (21), respectively. The remaining 
lowest-order terms concern the shape of the fluid interface. The equation governing go 
follows directly by substituting (19) and (41) into (22), resulting in 

subject to the constraint (24), 

.J n - -  
where Ro satisfies 

0 = Zo(Ro(r>, 0. 
The boundary-value problem defined by (42), (43) and (44) has been investigated by 
Barenblatt (see Barenblatt et al. 1990). He obtained a similarity solution for z0 of the 
form 

and 

where f satisfies the ordinary differential equation 

subject to the boundary condition 

and qR is given by 
f(1) = 0, 

As Barenblatt noted, it is convenient to have an additional boundary condition for f 
at 7 = 1, when obtaining a numerical solution of (47). This is accomplished by 
generating an asymptotic solution to (47) about 7 = 1, in terms of a power series in 
1-7, resulting in 

implying 

a+ 1 a- 1 (a+3)a 
36(a + 1) (1-#+ ..., f- -+I -7)++1-7)2+ 

Numerical solutions have been obtained to the initial-value problem defined by (47), 
(48) and (51) using the ordinary differential equation solver, based upon fourth- and 
fifth-order RungeKutta formulae, available on MATLABTM; refer to figure 3. Values 
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f (17) 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1 
17 

FIGURE 3. The solution for f ( q ) .  The solid curves indicate the exact numerical solution over a 
range of value of u. The dashed curves represent the asymptotic solution given by (50). 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

T R  rX a TR  

2.2744 2.2824 1.9 1.6338 
2.1919 2.2036 2.0 1.6177 
2.1234 2.1371 2.5 1.5478 
2.0650 2.0799 3.0 1.4908 
2.0141 2.0298 3.5 1.4430 
1.9691 1.9853 4.0 1.4020 
1.9288 1.9454 4.5 1.3662 
1.8925 1.9092 5.0 1.3346 
1.8594 1.8763 5.5 1.3063 
1.8290 1.8460 6.0 1.2809 
1.8010 1.8181 6.5 1.2577 
1.7751 1.7922 7.0 1.2364 
1.7510 1.7681 7.5 1.2169 
1.7284 1.7455 8.0 1.1988 
1.7072 1.7243 8.5 1.1820 
1.6873 1.7043 9.0 1.1663 
1.6685 1.6855 9.5 1.1516 
1.6507 1.6677 10.0 1.1377 

TABLE 1. Evaluation of vR and 7: 

7;: 
1.6508 
1.6347 
1.5645 
1.5073 
1.4592 
1.4180 
1.3820 
1.3502 
1.3217 
1.2960 
1.2726 
1.2512 
1.2315 
1.2133 
1.1963 
1.1805 
1.1656 
1.1516 

for qR have been evaluated from these solutions using (49); refer to table 1. Also 
included in table 1 are values of rR obtained using the asymptotic solution (50), which 
are denoted by q:. 

These values of rR differ by about 10% from those calculated using Barenblatt’s 
solution. Presumably, this reflects the better computational resources available today 
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0 2 4 6 8 10 
1.0' 

a 
FIGURE 4. The solutions for B~ (-) and 7; (----) over a range of values of a. 

as compared to 40 years ago, when he first published his results. It is of interest to note 
the extent to which the sum of the first three terms of the asymptotic expansion off 
follows the exact solution, refer to figure 3, as well as the degree to which 
7; agrees with qR, refer to table 1 and figure 4. 

4. Experiment 
Images were taken, using the X-ray CT scanner, of the filtrate as it progressed 

through the porous solid. Detection and digitization of the location of the 
filtrateformation fluid interface were accomplished using a simple pattern recognition 
technique. This section begins with a description of the instrumentation, and a 
characterization of the materials used in the experiment (the porous solid, the filtrate 
and the formation fluid), followed by a detail description of the pattern recognition 
technique used to interpret the X-ray attenuation images produced by the X-ray CT 
scanner. Then the experimental procedure is presented, along with the calibrations of 
the measurements and the results. 

4.1. Instrumentation 
The X-ray CT scanner was made by Elscint, model Exel 2002 BiModal CT, designed for 
medical purposes. It contains an X-ray tube which operates at a continuous high 
voltage of 140 kV and a current of 42 mA. Its innovative bimodal design utilizes a 
sequence of five coplanar translations of the radiation-detection system, each 
performed at a different angle relative to the sample. The radiation-detection system 
consists of an X-ray source producing a fan-shaped beam, opposed by a row of 
detectors, both lying in the same plane as the five coplanar translations of the system. 
The sample was placed so that the specific cross-section being imaged coincided with 
the plane of the radiation-detection system, the sample lying between the X-ray source 
and detectors. The thickness of the detected cross-section was 5 mm, determined by the 
thickness of the fan-shaped beam emitted by the X-ray source. The resolution of the 
images (in the plane of the image) was approximately 1 mm, determined by the size and 
number of detectors. An entire scan took one minute. Each image consisted of a 
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FIGURE 5. Image of a fractured surface of the porous solid on the microscopic scale. The resin (light 
regions) coats and consolidated the glass beads (shiny spherical regions). The darker regions are part 
of the pore. 

512 x 512 numeric matrix of the X-ray attenuation data which was processed remotely 
on a Sun Sparc 2 station using KBVisionTM (image analysis software developed by 
Amerinex Artificial Intelligence of Amherst MA). 

A Harvard syringe pump delivered filtrate at a constant volumetric flow rate to the 
sample. The syringe had a capacity of 250 ml, and the volumetric flow rate was known 
to within 2 % .  An analytic balance manufactured by A&D Engineering was used to 
monitor the amount of liquid exiting the sample through the Plexiglas chamber during 
the course of each experiment. The viscosity of the fluids was measured using a 
Cannon-Fenske viscometer. 

4.2. Characterization of the porous solid 
The porous solid was a composite structure having a relative high porosity and 
permeability composed of resin-cemented 100 urn diameter glass beads, sold 
commercially as a filter (Eaton Products, Birmingham Michigan). Figure 5 is an image 
of the material. Each experiment was conducted using the same porous solid sample, 
a ‘pie-shaped’ sector cut from a cylinder, shown in figure 6.  Each flat face of the sample 
was sealed with epoxy. The one remaining curved face was left unsealed so that the 
liquid could freely leave the sample. A Plexiglas chamber was attached to this end, 
which extended over the entire curved surface, to collect the exiting liquid and to 
maintain a hydrostatic pressure distribution (figure 7). The filtrate was delivered to the 
sample by & in. (ID) nylon tubing. A branch, which served as a purge, was created in 
the tubing a few centimetres upstream from the sample. Values were inserted, one in 
the branch, another upstream from the sample and downstream from the branch. The 
‘point source’, the position of entry of the filtrate into the porous solid, consisted of 
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FIGURE 7. Schematic of the experimental set-up. 
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FIGURE 8. X-ray attenuation image of sample indicating the location and structure of the point 
source. The image is taken of a plane located at an elevation, z = constant, just above the lower 
impermeability boundary. 

an opening in the nylon tubing positioned on the sample at the lowest point along the 
edge created by the intersection of the two vertical sides of the wedge. It is visible in 
the X-ray attenuation image of the sample of figure 8. The location of the point source 
is also indicated by the small bright region at the lower left corner of the image in figure 
9, representing a 'side view' inside the sample. The outer radius of the pie-shaped 
sample, i.e. the distance between the point source and the curved face (figure 9), was 
12.3 cm and the height of the sample was 12 cm. 

The physical properties of the porous solid were determined from measurements 
performed on horizontal and vertical Hassler cores taken from that part of the remains 
of the cylindrical filter which were contiguous to the two flat sides of the wedge of the 
sample, as indicated in figure 6. The permeability and porosity of each core were 
measured, their values are also indicated in the figure. Notice the degree of 
heterogeneity in the sample, a characteristic also of sedimentary rock. Since the theory 
assumes a homogeneous porous solid, the porosity and horizontal permeability were 
averaged over the lower portion of the sample, the location of the filtrate during the 
experiments, giving values of 0,255 and 4765 mD, respectively. 

4.3. Characterization of filtrate and formation fluid 
The criterion for choosing the filtrate and the formation fluid (beyond the fact that they 
have different densities and are miscible) was to maximize the difference in X-ray 
attenuation attained within regions of the porous solid fully saturated with each fluid. 
Various expressions for the X-ray attenuation, pCT,  have appeared in the literature 
(Evans 1955; Ellis 1987; Wellington & Vinegar 1987). They all indicate a dependence 
of pCT upon the energy E of the X-ray, the average density p and mass-fraction- 
weighted average atomic number ZCT, of the following form: 
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FIGURE 9. X-ray attenuation image of a plane located at q5 = constant, corresponding to about half 
the angle of the sector of the sample. The upper and lower impermeable boundaries correspond to 
the top and bottom edges of the image. The porous solid/Plexiglas chamber boundary corresponds 
to the right edge of the image. The location of the source of filtrate is ( r ,  z) = (0,O). 

FIGURE 10. X-ray attenuation image of the invaded sample. The filtrate (light grey) 
is denser than the formation water (dark grey). 

where a,,(,!?), Pca(E) and yCT(E)  are energy-dependent coefficients, and m ranging in 
value from 3 to 4 for porous rock. Advantage was taken of the sensitivity of pCT to Z,, 
by choosing a solution of sodium bromide and distilled water for the filtrate, having 
density of 1.4 g/cm3, and distilled water alone for the formation fluid. Sodium bromide 
was selected because its atomic number is 4.6 time greater than that of water. The 
viscosity of the filtrate was measured to be 1.93 x P. 
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FIGURE 11. Histogram of the pixel intensities in a typical X-ray attenuation image of the sample 
containing both invaded filtrate and formation fluid. The small peak at the high pixel intensity 
corresponds to the filtrate, and the large peak at the intermediate pixel intensity corresponds to the 
formation fluid. 

4.4. Pattern recognition 
To identify the location of the invading filtrate front, a technique based on pattern 
recognition was developed. The problem was to find the boundary between the filtrate 
and the formation fluid. These are two adjacent regions, each showing good contrast 
(figure lo), as indicated by the one-dimensional histogram of the intensity of the pixels 
in the image (figure 11). The histogram shows two distinct peaks, the first centred at 
a pixel intensity of 450 corresponding to the X-ray attenuation of the saturated sample 
without invading fluid (called the background region), and the second smaller peak, 
centred at a pixel intensity of 575, due to the presence of the invading fluid in the 
sample. The clear separation between the X-ray attenuations caused by the formation 
fluid and the invading fluid makes it possible to remove the signal associated with the 
background region. A plot of the pixel intensity at each position within the image 
(figure 12) shows a large peak at the origin due to the invading fluid in the point source. 
Adjacent to this peak is a region of constant, but smaller, pixel intensity (a plateau) 
corresponding to the sample invaded solely by the filtrate fluid. This plateau of 
constant intensity is bordered by a region characterized by a gradual decrease in 
intensity (appearing as a sloped surface) suggesting a transition between the filtrate and 
the formation fluid within the sample. This gradual transition is then followed by 
another plateau representing the region where no invading fluid is present. This 
indicates that there is no sharp interface between the formation fluid and the filtrate. 
This motivated us to determine the approximate locations of the boundary of the 
diffuse layer at the filtrate front, i.e. the upper and lower edges of the sloping surface. 

Given the above characteristics of the image, a simple thresholding approach was 
implemented. This consisted of identifying two values of the pixel intensity 
corresponding to the filtrate and the formation, as represented by the height of each 
plateau in figure 12. To remove the systematic errors associated with the sample 
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FIGURE 12. Plot of the pixel intensities comprising a typical image. The r-axis coincides with the lower 
impermeable boundary. The z-axis coincides with the ‘sharp edge’ of the pie-shaped sample. 

FIGURE 13. Binary image of the invaded sample. Note the many disconnected regions, 
refer to enlarged portion of the image. 
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FIGURE 14. The binary image in figure 13 after an erosion-dialation algorithm 
has been performed. 

saturated with formation fluid, the first image (figure 9), taken before the injection of 
the filtrate, was subtracted from every later image. A detailed description of choosing 
the thresholds is given below. These thresholds were used to compute two binary 
images. Each resultant binary image (figure 13) showed the region of interest (either the 
lower or the upper parts of the boundary of the diffuse layer at the filtrate front) with 
many subregions (or ‘holes’) in it resulting from the distribution of pixel intensity 
within the two plateaus referred to above. To simplify the pattern recognition process, 
the images were dilated to remove these detached subregions. This resulted in moving 
the edge of the invading fluid outward into the formation fluid by a few pixels. An 
erosion algorithm was then necessary to move the edge back to its original position 
(figure 14). The last step was to convert the two binary images into data (often referred 
to as a ‘token’) representing the approximate locations of the two boundaries of the 
diffuse layer. We converted each binary image to its token representation using 
commercial software (figure 15). This technique reduced the storage requirement by 
replacing each image of approximately half a megabyte by a token consisting of two 
kilobytes. 

In order to implement the pattern recognition technique, the values of the thresholds 
had to be identified. This was done in the following way. The pattern recognition 
algorithm was executed using an image taken near the conclusion of one of our 
reported experiments. This was done over a range of threshold settings spanning the 
intensity of the pixels within the diffuse region. At every intensity level within this 
range, the shape and location of each recognized curve and the volume within the 
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FIGURE 15. The token representation of the binary image in figure 14. 

sample, beneath each recognized curve, were determined (figure 16). Despite the 
erosion and dialation of the image in the pattern recognition technique, relatively large 
or small thresholds within the range produced rather complicated shapes, as indicated 
by threshold values of 45 and 230 in figure 16(b). The thresholds which were chosen 
to be used when analysing the images were the largest and smallest pixel intensities 
which recognized relatively smooth curves, 65 and 195 in figure 16(c). (Actually, the 
value of the larger threshold was reduced to eliminate the apparent artifact along the 
bottom of the images.) The levels of the pixel intensity of the images taken during other 
experiments were adjusted so that the intensities of the two peaks in the histograms 
were all at the same value. Having ‘normalized’ the scale of the intensity for all our 
images, the same thresholds were used throughout the entire study. 

4.5.  Experimental procedure 
Preparation for the experiments began by saturating the sample with distilled water. 
This was done under vacuum in a tank, resulting, at the conclusion of this procedure, 
in the sample being fully immersed in water. Without moving the sample, the tubing 
from the syringe pump was attached to it at the point source. When making this 
connection, the syringe pump was on, injecting water through the tubing and out of its 
ends (one end connected to the sample the other end of the purge) to insure that no air 
bubbles would get trapped. A piece of tubing was also connected, at this time, to the 
Plexiglas chamber situated along the curved surface of the sample, through which the 
distilled water leaves the sample. With the syringe pump maintained on, the purge was 
closed and the tubing leaving the chamber was placed below the water-air interface in 
a beaker (situated on the analytic balance). Only then was the sample removed from 
the tank and positioned in the X-ray CT scanner and the pump shut off. The syringe 
was filled with the sodium bromide solution by first closing the valve just upstream of 
the sample, opening the valve at the purge, emptying the distilled water from the 
syringe through the purge, refilling the syringe with solution and, finally, closing the 
valve at the purge. 

The experiments began by activating the syringe pump in its injection mode while 
having the valve to the sample closed and the purge open. The X-ray CT scanner was 
then used to check the position of the porous medium and to obtain an image of the 
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Threshold value 

FIGURE 16. Recognizing the diffuse region situated between the filtrate and the formation fluid. The 
volume beneath the recognized curve over a range of threshold values for a typical X-ray image are 
given in (a). The location within the image of the recognized curves are given for threshold values of 
45 and 230 in (b) and 65 and 195 in (c). 

sample saturated with only distilled water. With the pump continuously running in the 
above-stated configuration, the purge was closed while the valve just upstream of the 
sample was simultaneously opened. All of this was accomplished using remote controls 
so that an image could be taken simultaneously with the scanner. This corresponded 
to the time at which the experimental clock began. Subsequent images were taken every 
minute at the beginning of the experiment, with larger time intervals between images 
as the experiment progressed. An average of sixty images were taken for each 
experiment. Throughout each experiment, the temperature in the scanner room was 
maintained at 21 OC. At the conclusion of each experiment, the syringe was filled with 
distilled water and the sample flushed until approximately one gallon of water passed 
through. This was done with the sample rotated 90" from its orientation in the X-ray 
CT scanner so that its curved surface faced the floor. All of the experiments were 
carried out using the same sample. 

The above-described experimental procedure has the undesirable characteristic that 
t = 0 did not coincide with the initial appearance of filtrate in the sample at the 
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FIGURE 17. The volume of filtrate calculated beneath both curves recognized within the diffuse region 
compared to the measured mass of fluid displaced from the sample; see figure 18. The injection rate 
in this experiment was 3.0 x 

beginning of each experiment. This was a direct consequence of the location of less 
than one half a cubic centimeter of distilled water just ahead of the sodium bromide 
in the portion of the tubing between the sample and the nearest valve. To compensate 
for this injected volume, the moment corresponding to t = 0 was shifted in each 
experiment to the time that the filtrate began entering the sample, i.e. the shift was 
equivalent to making the volume of filtrate determined from the images to extraporlate 
to zero at time t = 0. The extrapolation was done using the fact that fluid always 
entered the sample at a constant volumetric flow rate (substantiated by the continuous 
monitoring of the weight of the fluid leaving the sample). Figure 17, typical of all our 
experiments, compares the volume of filtrate calculated beneath both curves recognized 

cm3/s and the time was shifted by 60 s. 
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FIGURE 18. Theoretical predictions of the filtrate front (white curve) superimposed on the X-ray 
attenuation images taken at eight different times: (a) t = 250 S, (b) t = 1090 S, (c) t = 2290 S, (d )  
t = 3970 s, (e) t = 7000 s, (f) t = 10030 s, (g) t = 14350 s, (h) t = 17950 s. The injection rate 
was 5.2 x cma/s. 
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FIGURE 19. As figure 18 but at times: (a) t = 60 s, (b) t = 420 s, (c) t = 910 s, (d) t = 1560 s, 
(e) t = 2400 s, (f) t = 3660 s, (g) t = 5640 s, (h) t = 7740 s and for injection rate 3.0 x cm3/s. 



Buoyancy-induced flow in porous media. Part I 307 

FIGURE 20. As figure 18 but at times: (a) t = 26 s, (b) t = 111 s, (c) t = 276 s, ( d )  t = 519 s, 
(e) t = 728 s, cf) t = 1137 s, (g) t = 1571 s, (h) t = 2231 s and for injection rate 2.5 x cm3/s. 
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FIGURE 21. Theoretical prediction along with the eight recognized filtrate fronts (corresponding to 

the smaller of the two thresholds) obtained from the images in figure 18. 
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FIGURE 22. As figure 21 but obtained from the images in figure 19. 
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FIGURE 23. As figure 21 but obtained from the images in figure 20. 

within the diffuse region of every image taken during an experiment and the measured 
mass of the fluid displaced from the sample by the injected filtrate after shifting the 
moment corresponding to t = 0. 

4.6. Results 
The results of three experiments are presented, each corresponding to a different filtrate 
volumetric flow rate: 5.2 x and 2.5 x lo-' cm3/s. Four X-ray CT 
scanner images taken at different times, for each experiment, are displayed in figures 
18, 19 and 20 in a grey scale representation of the X-ray attenuation data. The brighter 
the pixel, the larger the attenuation coefficient, and hence, the denser the fluid. Thus 
lighter regions indicate filtrate, while darker regions indicate the presence of distilled 
water. The position at which the filtrate was injected into the sample appears as a bright 
circle at the lower left corner of each image, and the solid white curve represents an 
evaluation of the theoretical results assuming a = 1. Finally, the suite of recognized 
curves (corresponding to the smaller of the two thresholds) for the four images 
associated with each experiment, re-expressed in terms of (7,j) using (45) and (46), 
appear in figures 21, 22, and 23. 

3.0 x 

5. Discussion and conclusions 
The focus of this study has been on the dynamics of the filtrate only in the horizontal 

layer, which is part of the larger problem of filtrate invading a permeable bed from a 
wellbore. By further restricting our attention to the outer region of the horizontal layer, 
we identified and investigated, both experimentally and theoretically, the specific 
problem consisting of a point source of filtrate located on an otherwise impermeable 
horizontal boundary of a fully saturated porous medium. We shall now use the 
experimental results to evaluate the appropriateness and limitations of some of the 
simplifying assumptions employed in the theoretical analysis of this specific problem. 
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Probably the most unexpected result has been the robustness of the solution, in spite 
of the small-slope approximation. This is evident in figures 20 and 23 which indicate 
adequate agreement even when rather large slopes are present. However, the extent of 
the agreement in the radial direction is not the same in all cases. The experiments 
indicate that the smaller the slope at the filtrate’s leading edge, then the greater the 
region of agreement in T ,  refer to figures 18-23. 

It should be no surprise that the theory breaks down near the origin, above the point 
source, as indicated in figures 18-23. Here, it can be concluded, based upon physical 
reasoning, that the size of the vertical and horizontal components of the velocity are 
of the same order, a clear violation of the small-slope approximation in the theory (the 
velocity of the filtrate as well as the slope of the filtrate front must be almost parallel 
to the surface of the impermeable boundary). A proper theoretical treatment of the 
filtrate within this region requires the use of scales different from those introduced in 
$3.2. This also implies that it is not justified, strictly speaking, using our predicted 
shape of the filtrate front within the region near r = 0 to satisfy the volume constraint, 
(43). (Note that the singular shape has the property that a vanishingly small volume of 
filtrate resides in the formation above the origin, despite the fact that the height of the 
interface approaches infinity.) However, by doing this, we are able to predict the 
location of the leading edge of the filtrate (the point furthest from the origin) based 
upon the outer solution alone. Thus, our justification for using (43) is based upon the 
degree of agreement between experiment and theory, in particular the ability of the 
theory to accurately predict the location of the filtrate’s leading edge. 

Another theoretical idealization of concern is the neglect of any transition zone 
between the regions fully saturated with the filtrate and with the formation fluid. The 
experiments show the existence of a diffuse transition region, an approximate location 
of its borders being indicated by the two curves identified using pattern recognition, 
refer to figure 16. Most likely this transition zone is a consequence of hydrodynamic 
dispersion, resulting in part from the heterogeneity of the sample, the thickness of the 
transition zone being too large to be solely a result of molecular diffusion. A direct 
consequence of ignoring the transition zone is the improper treatment of the filtrate 
front in the neighbourhood of the impermeable barrier, i.e. at the leading edge of the 
filtrate. When diffusive processes are present, the gradient in the concentration field, in 
this case salt, must be directed parallel to the impermeable surface. This implies that 
surfaces of constant salt concentration must terminate at right angles to the 
impermeable surface. Clearly, this is violated in the theoretical predictions of the shape 
of the interface, though it appears to be present in the experimentally determined 
shapes, refer to figures 21, 22 and 23. (The theory may be regarded as ignoring the 
dynamics of the fluids in an ‘inner region’ located in the immediate vicinity of the 
leading edge of the filtrate.) Despite this theoretical deficiency, the experiments show 
that adequate predictions are made for the location of the filtrate’s leading edge. Also, 
in spite of the heterogeneity of the sample indicated in figure 5 ,  theory based upon a 
homogeneous model gives rather good predictions. 

The incorporation of this solution into the larger problem of filtrate invading a 
permeable bed from a wellbore, is addressed in Part 2. 
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